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Developments in design sensitivity analysis (DSA) method have been made using two 
fundamentally different approaches as shown in figure 1. In the first approach, a 
discretized structural finite element model is used to carry out DSA. There are three 
different methods in the discrete DSA approach: finite difference, semi-analytical, and 
analytical methods. The finite difference method is a popular one due to its simplicity, 
but a serious shortcoming of the method is the uncertainty in the choice of a 
perturbation step size of design variables (ref. 1). In the semi-analytical method, the 
derivatives of stiffness matrix is computed by finite differences (refs. 2-4) whereas in 
the analytical method, the derivatives are obtained analytically. For the shape design 
variable, computation of analytical derivative of stiffness matrix Is quite costly (ref. 
1). Because of this, the semi-analytical method is a popular choice in discrete shape DSA 
approach (refs. 3 and 4). However, recently, Barthelemy and Haftka (ref. 5) presented 
that the semi-analytical method can have serious accuracy problems for shape design 
variables in structures modeled by beam, plate, truss, frame, and solid elements. They 
found that accuracy problems occur even for a simple cantilever beam. In the second 
approach, a continuum model of the structure is used to carry out DSA. For shape design 
variable, the material derivative concept of continuum mechanics is used to relate 
variations in structural shape to measures of structural performance (refs. 6-1 0). 
Using continuum DSA approach, expressions for shape design sensitivity are obtained in 
the form of integrals with integrands written in terms of natural physical quantities 
such as displacements, stresses, strains, and domain shape changes. If exact solutions of 
the continuum equilibrium equations are used to evaluate these continuum design 
sensitivity expressions, the method is called continuum-continuum (C-C) method. On 
the other hand, if the analysis results of the finite element or boundary element methods 
are used to evaluate these terms, the method is called continuum-discrete (C-D) method. 
The analytical method of discrete design sensitivity analysis approach will be called 
discrete-discrete (D-D) method. 

METHODS OF DESIGN SENSITIVITY ANALYSIS 

< DISCRETE 
APPROACH 

FINITE DiFFERENCE METHOD 

SEMI - ANALYTICAL METHOD 

ANALYTICAL (DISCRETE - DISCRETE) METHOD 

CONTINUUM - CONTINUUM METHOD 
CONTINUUM / 
APPROACH 

CONTINUUM - DISCRETE METHOD 

Figure 1 



The D-D method starts with the finite element matrix equilibrium equation for 
linear structural system as shown in figure 2, where K(b) is the reduced global 
stiffness matrix, z is the reduced displacement vector, F(b) is the external load vector, 
and b is a design variable vector. Differentiating both sides of the matrix equilibrium 
equation with respect to b, a matrix equation for the derivative of displacement vector, 
dz/db, is obtained where the tilde (-) indicates a variable that is to be held constant for 
the process of partial differentiation. If the derivative dz/db is obtained by solving this 
equation, the method is called direct differentiation method. If derivatives of a general 
performance measure are needed, an adjoint variable method can be used (ref. 11). Even 
though the direct differentiation and adjoint variable methods are different in 
computational efficiency depending on situations, they are equivalent in accuracy as long 
as consistent computational procedure is used for both methods. For the D-D method, the 
derivative of stiffness matrix is obtained analytically, whereas it is obtained by finite 
differences for the semi-analytical method. The discrete DSA approach is applicable to 
both sizing and shape design variables. For the shape design case, the design variables 
are positions of the finite element grid points. 

DISCRETE DSA APPROACH (DIRECT DIFFERENTIATION METHOD) 

Semi-analytical and analytical (D-D) methods 

Accuracy of the direct differentiation and adjoint variable methods are 
For general performance measures, use the adjoint variable method. 

equivalent. 
Discrete approach is applicable to both sizing and shape design variables. 

Figure 2 
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For the continuum approach, using the principle of virtual work, the variational 
equilibrium equation of the structural system can be obtained (ref. 11) as shown in 
figure 3, where an(-,-) denotes energy bilinear form, RQ(-) denotes load linear form, SZ 

is the shape of the structure, z is the displacement, f is the kinematically admissible 
virtual displacement, and Z is the space of kinematically admissible virtual 
displacements. Note that an approximate finite element matrix equilibrium equation can 
be obtained by applying the Galerkin method to the variational equilibrium equation for 
an approximate solution. For shape DSA, taking the material derivative of both sides of 
the variational equilibrium equation (refs. 10-1 2), a variational equation for the 

material derivative z of the displacement is obtained where V is the design velocity field. 

Expressions for a '  ( z  ,z)and 1 ' (7) can be obtained for various structural components 

(refs. 10-12). For the C-D method, an approximate finite element matrix equation is 

used to obtain an approximate solution of the second variational equation for i. On the 
other hand, for the C-C method, the analytical solution z of the first variational equation 

is used in the second variational equation to obtain the analytical solution z. As in the D- 
D method, if derivatives of a general performance measure are needed, an adjoint 
variable method can be used (refs. 10-12). The C-C method provides the exact design 
sensitivity of the exact model, whereas the C-D method provides an approximate design 
sensitivity of the exact model. On the other hand, D-D method yields the exact design 
sensitivity of an approximate finite element model, and both the finite difference and 
semi-analytical methods yield approximate design sensitivities of an approximate finite 
element model. 

v v 

CONTINUUM SHAPE DSA APPROACH (DIRECT DIFFERENTIATION METHOD) 

a,(z,>) = la(?), for all ZEZ 

a,(z,z) = ,tb(Z) - %(z,Z), for all ZEZ 

. 
C-C and C-D methods 

FEM equation is an approximate equation of the variational equation. 
Use material derivative concept of the continuum mechanics for shape DSA. 
For general performance measures, use the adjoint variable method of DSA. 

Figure 3 



One question often asked is; "Are the D-D and C-D methods equivalent?" For this 
question, certain conditions have to be given. First, the same discretization (shape 
function) used for the finite element analysis method must be used to evaluate the 
continuum design sensitivity results. Second, exact integrations (instead of numerical 
integrations) must be carried out for all integrations used for generation of stiffness 
matrix and evaluation of continuum design sensitivity expressions. The third condition to be 
met is that the exact solutions (not a numerical solution) of the finite element matrix 
equation and adjoint equation are used to compare two methods. The fourth condition is that 
movement of the finite element grid points for shape design change in the D-D method 
must be consistent with the parameterization method used for the design velocity field of 
the C-D method. For the sizing design variable, it is shown in reference 11 that the D-D 
and C-D methods are equivalent under the conditions given in figure 4 using a beam 
structural component. It has also been argued that the D-D and C-D methods are 
equivalent for shape design variable under the conditions given in figure 4 (refs. 13 and 
14). One point to note is that these four conditions are not easy to satisfy; in many cases, 
numerical integrations are used and exact solutions of the finite element matrix 
equations cannot be obtained. In this paper, equivalence study of D-D and C-D methods 
for shape design variables is carried out under the conditions given in figure 4. To carry 
out equivalence study of the D-D and C-D method, two simple structural components, a 
truss and a cantilever beam, are used. The shape DSA results of the D-D and C-D methods 
derived in the published literature are cited and used here without being derived in this 
paper. 

ARE THE D-D AND C-D METHODS EQUIVALENT? 

Equivalence study under the following conditions: 

The same shape function used for FEA must be used to evaluate the continuum 

DSA results. 
Exact integrations must be used to generate the stiffness matrix and evaluate 
the continuum DSA results. 
Exact solutions of the finite element and adjoint matrix equations are used to 

compare two DSA methods. 
Movement of FE grid points for the D-D method must be consistent with the 

parameterization of the design velocity field for the C-D method. 

Figure 4 
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In figure 5, the results of equivalence study of the D-D and C-D methods for shape 
design sensitivity are presented using a simple truss with one end fixed. The truss has a 
uniform cross-sectional area A and its length is R which is the shape design variable. 
Three loading cases, a point load p at the tip, a uniformly distributed load f, and a 
linearly varying load qdR, are considered as shown in figure 5. For each loading case, 
linear and quadratic shape functions are used for finite element models. For the linear 
shape function, two element model is used whereas for the quadratic shape function, one 
element model is used. For the equivalence study, design sensitivities of the nodal 
displacements are considered using the adjoint variable method. In figure 5, 'same' 
denotes that the D-D and C-D methods yield the same result and 'not' denotes that the two 
methods do not yield the same result. Details of the equivalence study results are given in 
the following figures. 

Cubic 

RESULTS OF EQUIVALENCE STUDY OF D-D AND C-D METHODS FOR TRUSS 

same same Not Not Not Not 

Figure 5 



For the design velocity V(x) to be used in the C-D method, three parameterization 
methods; linear, quadratic, and cubic polynomials are used as shown in figure 6, where 

4&, -61  26k - 4&1 1 8 ~ 2  - 9 ~ 3  + 261 
21  a2 = , P I  = 

R '  R2 
a1 = 

Note that for ail three parameterizations of design velocity, the perturbation of length of 
the truss is 61 at the tip. Moreover, for the quadratic and cubic design velocities, once 
El, i=1,2,3, are fixed, then the only one shape design variable is the length 4.  The 
movement of the finite element Qrid points for shape design changes in the D-D method 
must be consistent with these parameterization methods. For the D-D method, the shape 
design variables are the positions b1 and b2 of the nodal points. If the present design Is 
bl=R/2 and b2=R, then V(R/2)=6b1=6R/2 and V(R)=6b2=6R for the linear velocity, 
V(R/2)=6bl=f1 and V(R)=6bp=dR for the quadratic velocity, and V(RIP)=bbl= 
(9E2+9E3-6R)/16 and V(R)=6b2=6R for the cubic velocity. 

PARAMETERIZATIONS OF THE DESIGN VELOCITY V(x) 

0 11.2 R 

Linear 

V,(x) = x&R/R 

Quadratic Cubic 

V,(x) = a2x 2 + a lx  V,(X) = p3x3 + Pp 2 + P l X  

Figure 6 
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The first case of equivalence study is the truss with the point load p at the tip. For 
this, the finite element matrix equation, using linear shape function, is given in figure 7 
where the stiffness matrix depends on the shape design variables bi, i=1,2. The finite 
element matrix equation gives the solutions z1 =z(R/2)=pR/2EA and z,=z(R)=pRIEA at 
the present design bl=R/2 and bZ=R. Thus z(x)=px/EA which is the exact solution of 
the truss with the point load p at the tip. If the design sensitivities of displacements at 
two nodal points, z1 and z2, are desired, the adjoint equations are given in figure 7 with 
the adjoint solutions hl (x)=x/EA for OSx<R/2, h1 (x)=R/2EA for R/2Sx<R, and 
h*(x)=x/EA, respectively. These adjoint solutions are also exact. 

FIRST CASE: TRUSS WITH THE POINT LOAD p AT THE TIP 

(Linear Shape Function) 

- 2 - 1 G  

2y [ -1 1 

z(x) = (exact) 
EA 

x/EA, O<xSR/2 (exact) 

R/2EA1 1 / 2 s x d  I 
X Q(X) = - (exact) 
EA 

Figure 7 



Using the D-D method, design sensitivities for z1 and 22 are z' =pdRl2EA and 

z' =pdRIEA, respectively, for the linear velocity as shown in figure 8. On the other 

hand, if the quadratic velocity is used, then z' =pE1/EA and 2' =pdRIEA. Also for the 

cubic velocity, the D-D method yields z' =p(9E2+9E3-6 R)/16EA and z' =pdRIEA. Now, 

using the C-D method, the design sensitivity expression is obtained as 

1 

2 

1 2 

1 2 

zi = EAzxcVx dx, i = 1,2 ' d 
Using the finite element analyses results and the linear velocity in this design 
sensitivity expression, the C-D method gives 2' =pdR/2EA and z' =pdR/EA which are 

the same as the results of the D-D method. Moreover, the design sensitivity expression 
yields z'=pEl/EA and z1=p6R/EA for the quadratic velocity and z1=p(9E2+9E 3- 

dR)/16EA and z'=pdR/EA for the cubic velocity which are the same as the results of 

the D-D method. Thus, when the linear shape function is used for finite element model of 
the truss with the point load p, the D-D and C-D methods are equivalent for all 
parameterizations of velocity considered as indicated in the second column of figure 5. 
One point to emphasize in this case is that the original and adjoint responses of finite 
element models are the exact solutions of the truss with the point load. Note that the 
design sensitivity z' =pdRIEA is independent of the parameterizations of velocity for the 

C-D method. 

1 2 

1 2 1 

2 

2 

DESIGN SENSITIVITY OF NODAL DISPLACEMENTS (First Case) 

D-D and C-D methods yield the same result for all pararneterizations of 
velocity. 

Linear Velocity 

Quadratic Velocity 

Cubic Velocity 

z' =pdR/2EA 
1 

Z' =pEl/EA 
1 

Z' =p(9E2+9E3-6 R)/16EA 
1 

2' =p6 RIEA 
2 

z' =pd RIEA 
2 

2' =pd RIEA 
2 

Figure 8 
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EA 

-3X2’4R +5x’4 (approximate) - 1 6 - 8  4 hVx) = 
69 ‘[-a 7] [  1.: ]=[:I 

The second case of study is the truss with the uniformly distributed load f along the 
truss. For this, using the quadratic shape function, the finite element matrix equation is 
obtained as given in figure 9. The solutions of the finite element matrix equation are 
zl=z(R/2)=3fR2/8EA and z2=z(R)=fR2/2EA at the present design bl=R/2 and b2=R. 
Thus z(x)=fx(-x+2R)/2EA which is the exact solution of the truss with the uniformly 
distributed load f. If the design sensitivities of z1 and 22 are desired, the adjoint 
equations are given in figure 9 with the adjoint solutions hl (x)=(-3x2/4R +5x/4)/EA 
and hz(x)=x/EA, respectively. The adjoint solution h2(x) is the same as in the linear 
shape function case which is the exact solution. On the other hand, the adjoint solution 
hl(x) is different from the linear shape function case and not exact. 

SECOND CASE: TRUSS WITH UNIFORMLY DISTRIBUTED LOAD f 

(Quadratic Shape Function) 

fx(-x+2R) (exact) 
2EA 

t(X)  = 

@(XI = - (exact) 
B4 

Figure 9 



Using the D-D method, design sensitivities for z l  and z2 are I' =3fRdR/4EA and 

z' =fRdRIEA, respectively, for the linear velocity as shown in figure 10. On the other 

hand, if the quadratic velocity is used, then z1=fR(6R+E1)/2EA and z'=fRdR/EA. Also, 

for the cubic velocity, the D-D method yields z' =fR( l56R+9~~+9€3) /32EA.  Now, 

using the C-D method, the design sensitivity expression is obtained as 

1 

2 

1 2 

1 

R .'=lo (fhi+EAz,$)V,dx, i=  1,2 

Using the finite element analyses results and the linear velocity in this expression, the 
C-D method gives z' =3fR 6 RMEA and z' =fR 6 &EA which are the same as the results of 

the D-D method. Also, using the finite element analyses results and the quadratic 
velocity in the design sensitivity expression, the C-D method gives z' =f R (6 R +E 1 )/2 EA 

and =fR6R/EA. These are the same as the results of the D-D method. However, the 

design sensitivity expression yields z' =fR (426 R +36€2+9€3)/80EA for the cubic 

velocity which is different from the result of the D-D method. Hence, it can be concluded 
that the D-D and C-D methods are not equivalent in the second case of study. Notice that 
the sensitivity results of the D-D method are the same as those of the C-D method up to 
the linear velocity when the linear shape function is used and up to the quadratic velocity 
when the quadratic shape function is used. Thus, the second case indicates the D-D and C- 
D methods might be equivalent under an additional condition that the shape function used 
in the finite element model is isoparametric with the discretization polynomial of the 
design velocity. However, this is not trtie as the results of the next case of study indicate. 

1 2 

1 

2 

1 

DESIGN SENSITIVITY OF NODAL DISPLACEMENTS (Second Case) 

Linear Velocity 

Quadratic Velocity 

Cubic Velocity 

D - D  

Z' =3fR 6 RI4EA 

Z' =fR 6 RIEA 
1 

2 

Z' =f R ( 6 R + E 1 )REA 

Z' =fR 6 RIEA 
1 

2 

Z' =fR (156R+9€2+9€3)/32EA 
1 

C - D  

z' = 3 f R  6 RMEA 

z' =fR 6 R E A  
1 

2 

Z' =fR (6 R +E 1 )/2EA 
1 

2 
z' =fR 6 R/EA 

Z' =fR (426 R +36€2+9€3)/80EA 
1 

Figure 10 
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The third case of study is the truss with the linearly varying load qx/R along the 
truss. Before carrying out design sensitivity computation, dependency of the external 
load on the shape design has to be defined as shown in figure 11. That is, as the length of 
the truss changes, the external load will maintain the form of qx/R. For this, using the 
quadratic shape function, the finite element matrix equation is given in figure 11. The 
matrix equation gives the solutions z1 =z(R/2)=1 lqR2/48EA and z2=z(R)=qR2/3EA at 
the present design bl=R/2 and b2=k. Thus z(x)=qx(-3~+71)/12EA which is not the 
exact solution of the truss with the linearly varying load. The same adjoint equations that 
are given in figure 9 are applicable in this case with the solutions h1(x)=(-3x2/4R 
+5x/4)/EA and hZ(x)=x/EA, respectively. As mentioned before, the adjoint solution 
h’(x) is not exact, whereas h2(x) is exact. 

THIRD CASE: TRUSS WITH LINEARLY VARYING LOAD q x / l  

(Quadratic Shape Function) 

z(x) = q x(-3x+7R) (approximate) 
12EA 

Dependency of the External Load on Shape Design Variable 

Figure 11 



Using the D-D method, design sensitivities for z1 and 22 are z1 =1 lqR6RI16EA and 

z'=qR6RIEA, respectively, for the linear velocity as shown in figure 12. On the other 

hand, if the quadratic velocity is used, then z' =qR(2562+16€1)/48EA. Also for the 

cubic velocity, the D-D method yields z1 =qR6R/EA. Now, using the C-D method, the 

design sensitivity expression is obtained as 

1 

2 

1 

2 

I 

Z; = [ (9)dV + ( E ) d V x  R + EA z x t V x ]  dx, i = 1,2 
0 1  

Using the finite element analyses results and the linear velocity in this expression, the 
C-D method gives z1 =1 lqRdRI16EA and z' =qR6RIEA which are the same as the results 

of the D-D method. However, using the finite element analyses results and the quadratic 
velocity in the design sensitivity expression, the the C-D method gives 

z' =qR(196R+292E1)/240EA, whereas it yields z '=qR(2496 R+27€2-27€3) /240EA 

for the cubic velocity. These are not the same as the results of the D-D method. Thus the 
D-D and C-D methods are not equivalent for the truss with a linearly varying load. Based 
on the equivalence study of truss problem, the D-D and C-D methods are possibly 
equivalent only for linear velocity. If this is the case, then both methods will give the 
exact design sensitivity information of the finite element analysis results that may not 
be acceptable at all. This is the situation for the fillet problem in reference 15 that the 
design sensitivity results of the C-D method agrees up to 5 to 6 digits with the finite 
difference even though the finite element model using constant stress triangular element 
does not provide accurate analysis result. On the other hand, when automatic regridding 
methods are employed for shape optimal design (refs. 16 and 17), parameterizations of 
the design velocity field cannot be limited to be only linear functions. 

1 2 

1 2 

DESIGN SENSITIVITY OF NODAL DISPLACEMENTS (Third Case) 

Linear Velocity 

Quadratic Velocity 

Cubic Velocity 

D - D  

z1 =11 qR 6 111 6EA 
1 

2 
Z' =qR&RIEA 

Z'  = q R  (25 6 R +16€ 1)/48EA 
1 

Z' =qR 6 R/EA 
2 

C - D  

Z' =11 qR 6111 6EA 

Z' =qR&R/EA 
1 

2 

Z'  =qR(196 R +292€1)/240EA 
1 

Z1 2 =qR (2496 R +27€2-27€3)/240EA 

Figure 12 
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Linear Same 

Quadratic Same 

Hermitian Same 

The results of analytical equivalence study for a simple cantilever beam with 
moment of inertia I and length 1 are given in figure 13. Like the truss problem, three 
lateral loading cases shown in figure 13 are considered. For all loading cases, Hermite 
cubic shape functions are used for the finite element model with one element. Also, for 
the design velocity V(x), the same linear and quadratic parameterizations as in the truss 
problem are used. In addition to these, Hermitian parameterization of the velocity is 
used. That is, if the beam is fixed at x=O and changes its length by 6 1  at x=R and the 
slope of the velocity is zero at x=O and 8 at x=1, then the parameterization of the 
velocity is V4(x) as shown in figure 13 where y and y are given in terms of 1, 61, and 

8. For the equivalence study, design sensitivity of the tip displacement is considered. The 
results of equivalence study are summarized in figure 13. As in the truss case, the finite 
element model for the beam with the point load p at the tip yields the exact solutions of 
the original and adjoint structures. Hence the D-D and C-D methods give the same design 
sensitivity results for all parameterizations of velocity as shown in figure 13. 

3 2 

f 

q 

same same 

Not Not 

Not Not 

RESULTS OF EQUIVALENCE STUDY OF D-D AND C-D METHODS FOR BEAM 

3 2  3 2 
Hermitian Velocity V =y x +y x with y = ( R 0 - 2 6 R ) l R  , y = ( - R 8 + 3 6 R ) l R  

4 3  2 3 2 

Figure 13 



For the beam with the linearly varying load qx/R along the beam, the finite element 
matrix equation is given in figure 14 with the solutions zl=l lqR4/120EI and 
z2=qR3/8EI at the present design b=R. Thus z(x)=qR(l 8Rx*-7x3)/120EI which is an 
approximate solution of the beam with linearly varying load. For the design sensitivity 
of 21, the solution of the adjoint equation given in figure 14 can be used. Using the D-D 
method, design sensitivity for z1 is z' =11 qR36 R/24EI for all parameterizations of 

velocity. For the C-D method, the design sensitivity expression is 
1 

1 

a b2 
- 6 b  4b2 22 

z; = { E1 3Z,,h,,V, + ( zxhxx + z,,h, 1 V,, 1 + 9 hV+ - hV, dx ( 1 )  (qdc)  1 

120EI 

Using the finite element analyses results in this design sensitivity expression, the C-D 
method yields 2' =1 l q R 3 6  R/24EI for the linear velocity which is the same as the result 

of the D-D method. However, the design sensitivity expression yields z' =qR3( l  71 6 1- 

1 2 f  1)/360EI for the quadratic velocity and z' =qR3( l1946 R-9R 8) /2520EI  for the 

Hermitian velocity which are not the same as the results of the D-D method. Thus the D- 
D method and C-D methods are not equivalent for the beam with linearly distributed load 
as indicated in figure 13. Based on the equivalence study of the beam problem, the D-D 
and C-D methods are possibly equivalent only for linear velocity. 

1 

1 

1 

DESIGN SENSITIVITY OF NODAL DISPLACEMENT FOR BEAM 

(Linearly Varying Load q x l l )  

Linear Velocity 

Quadratic Velocity 

Her mi t ian Velocity 

D - D  

2' = I  1 q R 3 6  m 4 E I  
1 

z' =11 qR36R/24EI 
1 

=11 qR36 R/24EI 
1 

Figure 14 

U x )  = X2(3R-X) (exact) 
6EI 

C-D 

z ' = l  lqR36R/24EI  
1 

2;  =q R 3( 1 71 6 R - 1 2E 1 )/360 E I  

2' = q R  3(1 i  94 6 R -91 e ) / 2 5 2 0 ~ 1  
1 
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Next, a numerical study is carried out for the C-D method using the cantilever beam 
with the uniformly distributed load to see effect of accuracy of the finite element 
analysis results on accuracy of the design sensitivity informations obtained. The finite 
element models with 1, 2, and 20 elements are considered for numerical study. Node 
numbering for all finite element models starts at the clamped end of the beam and the 
node number of free end of the beam is (m+l) where m is the number of elements in the 
model. The beam is 60 in. long and has a uniform rectangular cross-section of 0.5 in. 
high and 0.25 in. wide. Young's modulus, Poisson's ratio, and uniformly distributed load 
are E=30x1 O6 psi, v=0.3, and f=0.5 2 b/in., respectively. Finite element analysis is 
carried out using ANSYS finite element STIF4. Three parameterizations of velocity with 
1% perturbation of the length R=60 in. of the beam are used for numerical study as 
shown in figure 15. Once the solutions of the original and adjoint structural system are 
obtained using ANSYS, the continuum design sensitivity expression is numerically 
integrated using three points Gauss quadrature. 

CONTINUUM-DISCRETE METHOD FOR A CANTILEVER BEAM 

I 0.25 in. 
6 R =60 in., E=30 x 1 0  psi, v -0.3, f=0.5 Rb/in. 

ANSYS STIF4 

Parameterizations of Velocity for Numerical Study of the C-D Method 

Parameter Values I 
Linear & R  =0.6 in. 

Quadratic 

He rrn i ti an 

& R  =0.6 in. and E,= 10 in. 

61 =0.6 in. and 8 =-0.3 

Figure 15 



To check accuracy of the design sensitivity obtained, the results are compared with 
the results obtained by finite difference as shown in figures 16 and 17. In these figures, 
z ( R - 6 1 )  and z (R+6R)  are the displacements of selected nodal points for perturbed 
backward and forward designs, respectively, Az=z(R+6 R)-z(R -6 R )  is the finite 
difference, and z' is the difference predicted by the design sensitivity. The ratio of z' and 
Az times 100 can be used as a measure of accuracy of the design sensitivity. In figures 
16 and 17, for all finite element models, the case A with linear velocity yields excellent 
agreement between the design sensitivity z' and the finite difference Az. This confirms 
with the results of analytic study that the D-D and C-D methods may be equivalent for 
linear velocity. On the other hand, for one element model, the design sensitivity z' and 
the finite difference Az do not agree at all for other parameterizations (cases B and C) of 
velocity as can be seen in figure 16. For cases B and C, the agreements improve 
substantially for two elements model. 

COMPARISON OF DESIGN SENSITIVITY OF THE C-D METHOD 

One Element Model 

Node (Z'/AZ 
Case No. z(R-GR) Z ( R + G R )  Az Z' x i  OO)% 

-_____----__------------------------------------------------- 
A 2 0.99593E+00 0.1 0789E+01 0.41476E-01 0.41 471 E-01 100.0 
B 2 0.99593E+00 0.10789E+01 0.41476E-01-0.47926E-01 -1 15.6 
C 2 0.99593E+00 0.1 0789E+01 0.41476E-01 0.64970E-01 156.6 

Two Elements Model 

Figure 16 
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On the other hand, for twenty elements model, agreements become excellent as 
shown in figure 17. This confirms the fact that accurate design sensitivity informations 
can be obtained as long as accurate finite element analysis results are used for the C-D 
methods. This fact is not the case for the semi-analytic method, as demonstrated by 
Barthelemy and Haftka (ref. 5). They found that the design sensitivity error of the 
semi-analytic method is proportional to the square of the number of elements. This is 
completely opposite behavior from the C-D method since the design sensitivity error 
increases very rapidly as the finite element analysis results of the original structure 
become more accurate. As demonstrated in figures 16 and 17, an essential advantage that 
may accrue in the C-D method is associated with the ability to identify the effect of 
numerical error associated with finite element analysis results. That is, if disagreement 
arises between the design sensitivity of the C-D method and the finite difference, then 
error has crept into the finite element approximation. If the D-D method is used, in 
which the structure is discretized and the design variables are imbedded into the 
stiffness matrix, then any error inherent in the finite element model is consistently 
parameterized and will never be reported to the user. Therefore, precise design 
sensitivity coefficients of the matrix model of the structure are obtained without 
realizing that there may be substantial inherent error in the original model. On the 
other hand, the C-D method can be used to obtain a warning that approximation error is 
creeping into the finite element model. 

COMPARISON OF DESIGN SENSITIVITY OF THE C-D METHOD (Cont) 

Twenty Elements Model 

Node (z'lA z 
case No. z(R-8.4) z(R+GR) A2 2' x l  OO)% 

--------_----_______----------------------------------------- 
A 2 0.48158E-02 0.521 69E-02 0.20055E-03 0.20053E-03 100.0 

6 0.10504E+00 0.1 1379E+00 0.43744E-02 0.43739E-02 100.0 
1 1 0.35273E+00 0.3821 OE+OO 0.1 4689E-01 0.14688E-01 100.0 
1 6  0.66525E+00 0.72066E+00 0.27704E-01 0.27701 E-01 100.0 
2 1 0.99593E+00 0.1 0789E+01 0.41 476E-01 0.41 471 E-01 100.0 

B 2 0.70800E-03 0.13220E-01 0.62558E-02 0.62566E-02 100.0 
6 0.29727E-01 0.22933E+00 0.99800E-01 0.10127E+00 101.5 

_----_--____-___________________________--------------------- 

1 1 0.1 7939E+00 0.59469E+00 0.20765E+00 0.21023E+00 101.2 
1 6 0.50771 E+OO 0.89205E+00 0.1 921 7E+00 0.1 9269E+00 100.3 
2 1  0.99593E+00 0.10789E+01 0.41476E-01 0.41 467E-01 100.0 

C 2 0.4761 4E-02 0.52749E-02 0.25676E-03 0.25673E-03 100.0 
6 0.95061 E-01 0.12480E+00 0.14869E-01 0.14863E-01 100.0 

1 1 0.30947E+00 0.42955E+00 0.60040E-01 0.60046E-01 100.0 
1 6 0.60858E+00 0.781 34E+00 0.86383E-01 0.86384E-01 100.0 
2 1 0.99593E+00 0.1 0789E+01 0.41 476E-01 0.41 470E-01 100.0 

____________________----------------------------------------- 

Figure 17 
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